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Types of Locks
• There are different types of locks that locking protocols may 

utilize.

• The most restrictive systems use only exclusive-locks (X-
lock also called a binary lock).

• An exclusive lock permits the transaction which holds the 
lock exclusive access to the object of the lock.

• The process of locking and un-locking objects must be 
indivisible operations within a critical section.  There can be 
no interleaving of issuing and releasing locks.

If transaction TX holds an X-lock on object A then no distinct transaction TY
can obtain an X-lock on object A until transaction TX releases the X-lock 
on object A.  TY is blocked awaiting the X-lock on object A.
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X-Lock Protocol

• When the lock manager grants a transaction’s request for a 
particular lock, the transaction is said to “hold the lock” on 
the object.

• Under the X-lock protocol a transaction must obtain, for 
every object required by the transaction, an X-lock on the 
object.  This applies to both reading and writing operations.

Before any transaction TX can read or write an object A, it must first 
acquire an X-lock on object A.  If the request is granted TX will proceed 
with execution.  If the request is denied, TX will be placed into a queue of 
transactions awaiting the X-lock on object A, until the lock can be granted.  
After TX finishes with object A, it must release the X-lock.
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Serializability Under X-Lock Protocol

Algorithm TestSerializiabiltyXLock

//input:  a concurrent schedule S under X-lock protocol

//output: if S is serializable, then a serially equivalent schedule S′ is produced, otherwise, no.

TestSerializabilityXLock(S)

1. let S = (a1, a2, ..., an) where “action” ai is either (TX: Xlock A) or (TX: Unlock A)

2. construct a precedence graph of n nodes where n is the number of distinct 
transactions in S.

3. proceed through S as follows:

• if ar = (TX: Unlock A) then look for the next action as of the form (TY: Xlock A).  
If one exists, draw an edge in the graph from TX to TY.  The meaning of this 
edge is that in any serially equivalent schedule TX must precede TY.

4. if the graph constructed in step 3 contains a cycle, then S is not equivalent to any 
serial schedule (i.e., S is not serializable).  If no cycle exists, then any topological 
sort of the graph will yield a serial schedule equivalent to S.
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Example - X-Lock Protocol and Serializability
Let S = [(T1: Xlock A), (T2: Xlock B), (T2: Xlock C), (T2: Unlock B), 

(T1: Xlock B), (T1: Unlock A), (T2: Xlock A), (T2:Unlock C), 

(T2: Unlock A), (T3: Xlock A), (T3: Xlock C), (T1: Unlock B),

(T3: Unlock C), (T3: Unlock A)]

T1 T2

T3

Edge #1:  (T2: Unlock B)...(T1:Xlock B)

Edge #2: (T1: Unlock A)...(T2: Xlock A)

Edge #3: (T2: Unlock C)...(T3: Xlock C)

Edge #4: (T2: Unlock A)...(T3: Xlock A)

3, 4

2

1

Not serializable, cycle exists
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Problems with X-Lock Protocol
• The X-lock protocol is too restrictive.

• Several transactions that need only to read an object must all wait in turn 
to gain an X-lock on the object, which unnecessarily delays each of the 
transactions.

• One solution is to issue different types of locks, called shared-locks (S-
locks or read-locks) and write-locks (X-locks).

• The lock manager can grant any number of shared locks to concurrent 
transactions that need only to read an object, so multiple reading is 
possible.  Exclusive locks are issued to transactions needing to write an 
object.

• If an X-lock has been issued on an object to transaction TX, then no other 
distinct transaction TY can be granted either an S-lock or an X-lock until 
TX releases the X-lock.  If any transaction TX holds an S-lock on an 
object, then no other distinct transaction TY can be granted an X-lock on 
the object until all S-locks have been released.
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Serializability Under X/S-Lock Protocol
Algorithm TestSerializiabiltyX/SLock

//input:  a concurrent schedule S under X/S-lock protocol

//output: if S is serializable, then a serially equivalent schedule S′ is produced, otherwise, no.

TestSerializabilityXLock(S)

1. let S = (a1, a2, ..., an) where “action” ai is one of (TX: Slock A),  (TX: Xlock A)            
or (TX: Unlock A).

2. construct a precedence graph of n nodes where n is the number of distinct 
transactions in S.

3. proceed through S as follows:

• if ax = (TX: Slock A) and ay is the next action (if it exists) of the form (TY: Xlock 
A) then draw an edge from TX to TY.

• if ax = (TX: Xlock A) and there exists an action az = (TZ: Xlock A) then draw an 
edge in the graph from TX to TZ.  Also, for each action ay of the form (TY: Slock 
A) where ay occurs after ax (TX: Unlock A) but before aZ (TZ: Xlock A) draw an 
edge from TX to TY.   If az does not exist, then TY is any transaction to perform 
(TY: Slock A) after (TX: Unlock A).

4. if the graph constructed in step 3 contains a cycle, then S is not equivalent to any 
serial schedule (i.e., S is not serializable).  If no cycle exists, then any topological 
sort of the graph will yield a serial schedule equivalent to S.
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Example – X/S-Lock Protocol and Serializability
Let S = [(T3: Xlock A), (T4: Slock B), (T3: Unlock A), (T1: Slock A), 

(T4: Unlock B), (T3: Xlock B), (T2: Slock A), (T3:Unlock B), 

(T1: Xlock B), (T2: Unlock A), (T1: Unlock A), (T4: Xlock A),

(T1: Unlock B), (T2: Xlock B), (T4: Unlock A), (T2: Unlock B)]

Edge #1: (T4: Slock B)...(T3: Xlock B)
Edge #2: (T1: Slock A)...(T4: Xlock A)
Edge #3: (T2: Slock A)...(T4: Xlock A)
Edge #4: (T3: Xlock A)...(T4: Xlock A)

Edge #5: (T3: Unlock A)...(T1: Slock A)
Edge #6: (T3: Unlock A)...(T2: Slock A)

Edge #7: (T3: Xlock B)...(T1:Xlock B)
Edge #8: (T1: Xlock B)...(T2: Xlock B)

Not serializable, cycle exists

T1 T2

T3

2

1T4

3

4

5,7

8

6
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Problems Locking Protocols

• The X-lock protocol can lead to deadlock.

– For example consider the schedule S = [(T1:Xlock A), (T2: Xlock B),

(T1: Xlock B), (T2: Xlock A)]

• While there are many different techniques that can be used to 
avoid deadlock, most are not suitable to the database 
environment.

T1 is blocked T2 is blocked
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Deadlock Avoidance - Problems Locking Protocols
(cont.)

• Impose a total ordering on the objects.

– Problem is the set of lockable objects is very large and changes dynamically.
– Many database transactions determine the lockable object based on content 

and not name.
– The locking scope of a transaction is typically determined dynamically.

• Two-phase locking protocols.
– All locks are granted at the beginning of a transaction’s processing or no 

locks are granted.  Transactions which cannot acquire all of the locks they 
need are suspended without being granted any locks.

– Leads to low data utilization, low-levels of concurrency and livelock.
– Livelock occurs when a transaction that needs several “popular” items is 

consistently blocked by transactions which need only one of the popular 
items.
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Deadlock Avoidance - Problems Locking Protocols
(cont.)

• There is also a timestamp based protocol (under locking –
don’t confuse this with timestamp based concurrency 
controls we’ll see later) to prevent deadlock under locking 
protocols.

• A timestamp is a unique identifier assigned to each 
transaction based upon the time a transaction begins.

– if ts(TX) < ts(TY) then TX is the older transaction and TY is the 
younger transaction.

– In resolving deadlock issues, the system uses the value of the 
timestamp to determine if a transaction should wait or rollback.
Locking is still used to control concurrency.

– Under rollback a transaction retains its original timestamp.
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Deadlock Resolution – Wait or Die

• Assume that TX requests an object whose lock is held by TY.

• This is a non-preemptive strategy where if ts(TX) < ts(TY) (TX is older 
than TY) then TX is allowed to wait on TY, otherwise TX dies (is rolled 
back).  TY continues to hold the lock and TX subsequently restarts with its 
original timestamp.

– if request is made by older transaction – it waits on the younger transaction.

– if request is made by younger transaction – it dies.

• Example:  let ts(T1) = 5, ts(T2) = 10, ts(T3) = 15

Suppose T2 requests object held by T1.  T2 is younger than T1, T2 dies.

Suppose T1 requests object held by T2.   T1 is older than T2, T1 waits.
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Deadlock Resolution – Wound or Wait

• Assume that TX requests an object whose lock is held by TY.

• This is a preemptive strategy where if ts(TX) < ts(TY) (TX is older than 
TY) then TY is aborted (TX wounds TY).  TX preempts the lock and 
continues.  Otherwise, TX waits on TY.

– if request is made by the younger transaction – it waits on the older 
transaction.

– if request is made by older transaction – it preempts the lock and the younger 
transaction dies.

• Example:  let ts(T1) = 5, ts(T2) = 10, ts(T3) = 15

Suppose T2 requests object held by T1.  T2 is younger than T1, T2 waits.

Suppose T1 requests object held by T2.   T1 is older than T2, T1 gets 
lock and T2 dies.
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Timestamp Deadlock Resolution
• Both wait or die and wound or wait protocols avoid starvation.  At any 

point in time there is a transaction with the smallest timestamp (i.e., 
oldest transaction) and it will not be rolled back in either scheme.

Operational Differences

– In wait or die, the older transaction waits for the younger one to release its 
locks, thus, the older a transaction gets, the more it will wait.  In wound or 
wait, the older transaction never waits.

– In wait or die protocol if transaction T1 dies and is rolled back it will in 
probably be re-issued and generate the same set of requests as before.  It is 
possible for T1 to die several times before it will be granted the lock it is 
requesting as the older transaction is still using the lock.  Whereas, in wound 
or wait, it would restart once and then be blocked.  Typically, the wound or 
wait protocol will result in fewer roll backs than does the wait or die protocol.
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Deadlock Avoidance vs. Detection and Resolution

• If the deadlock prevention or avoidance mechanism is not 
100% effective, then it is possible for a set of transactions to
become deadlocked.

• Handling this problem can be achieved in one of two basic 
manners: optimistically or pessimistically.

• Optimistic approaches tend to wait for deadlock to occur 
before doing anything about it, while pessimistic approaches 
tend to make sure that deadlock cannot occur.

• Optimistic approaches use detection and resolution schemes 
while pessimistic approaches use avoidance mechanisms.
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Deadlock Detection and Resolution

• Deadlock detection and resolution involves two phases: 
detection of deadlock and its resolution.

• Deadlock detection is commonly done with wait-for graphs 
(a form of a precedence graph).  Each node in the graph 
represents a transaction in the system.  An edge from 
transaction TX to transaction TY indicates that TX is waiting 
on an object currently held by TY.  A deadlock is detected if 
the graph contains a cycle.

• The resolution phase or the recovery from the deadlock, 
essentially amounts to selecting a victim of the deadlock to 
be rolled back, thus breaking the deadlock.
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Deadlock Detection and Resolution (cont.)

• Selection of a victim to resolve the deadlock can be based upon many 
different things:

– how long has the transactions been processing?

– how much longer does the transaction require to complete?

– how much data has been read/written?

– how many data items are still needed?

– how many transactions will need to be rolled back?

• Once a victim has been selected you can decide how far back to roll it.  It 
is not always necessary for a complete restart.

• Deadlock detection and resolution requires some mechanism to prevent 
starvation from occurring.  Typically this is done by limiting the number 
of times a single transaction can be identified as the “victim”.
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Timestamping Concurrency Control

• No locking is used with timestamp concurrency control.  Do 
not confuse this topic with the timestamped method for 
avoiding deadlock under locking.

• As before, each transaction is issued a unique timestamp 
indicating the time it arrived in the system.

• The size of the timestamp varies from system to system, but 
must be sufficiently large to cover transactions processing 
over long periods of time.  

• Assignment of the timestamp is typically handled by the 
long-term scheduler as transactions are removed from some 
sort of input queue.
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Timestamping Concurrency Control (cont.)

• In addition to the transaction’s timestamp, each object in the 
database has associated with it two timestamps:

– read timestamp – denoted rts(object), and it represents the highest 
timestamp of any transaction which has successfully read this object.

– write timestamp – denoted wts(object), and it represents the highest 
timestamp of any transaction to successfully write this object.

• As with locking the granularity of an “object” in the database 
becomes a concern here, since the overhead of the 
timestamps can be considerable if the granularity is too fine.
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Timestamp Ordering Protocol
READ – transaction TX performs read(object)

if ts(TX) < wts(object)
then rollback TX // implies that the value of the object has been written by a 

// transaction TY which is younger than TX

else // ts(TX) >= wts(object)
execute read(object)
set rts(object_ = max{ rts(object), ts(TX)}

WRITE – transaction TX performs write(object)
if ts(TX) < rts(object)

then rollback TX //implies that the value of the object being produced by TX was 
//read by a transaction TY which is younger than TX and TY

//assumed the value of the object was valid.
else if ts(TX) < wts(object)

then ignore write(object)  //implies that TX is attempting to write an “old”
//value which has been updated by a younger
//transaction.

else
execute write(object
set wts(object) = max{wts(object), ts(TX)}
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Explanation of the Ignore Write Rule

• In the timestamp ordering protocol, when the timestamp of the 
transaction attempting to write an object is less than the write
timestamp of the object of concern, the write is simply ignored.

• This is known as Thomas’s write rule.

• Suppose that we have two transactions T1 and T2 where T1 is the 
older transaction.  T1 attempts to write object X.  If ts(T1) < 
wts(X) then if T2 was the last transaction to write X, wts(X) = 
ts(T2) and between the time T2 wrote X and T1 attempted to write
X, no other transaction Tn read X or otherwise rts(X) > ts(T1) and 
T1 would have aborted when attempting to write X.  Thus T1 and 
T2 have read the same value of X and since T2 is younger, the 
value that would have been written by T1 would simply have been 
overwritten by T2, so T1’s write can be ignored.
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Example - Timestamp Ordering Protocol

rts = 175
wts = 0

wts = 200
rts = 200

rts = 150
wts = 200final

rts = 0
wts = 0

rts = 0
wts = 0

rts = 0
wts = 0

ts = 175ts = 150ts = 200initial

7

6

5

4

3

2

1

time

ObjectsTransactions

rts = 175

C

wts = 200

rts =200

B

wts = 200

rts = 150

A

ignore

abort T2
ts(T2) < rts(C)

allowed

allowed

allowed

allowed

allowed

Action

write A

read C

T3

write 
C

read A

T2

write A

write B

read B

T1


