
COP 4710: Database Systems (Transaction Processing) Page 1 Mark Llewellyn ©

COP 4710: Database Systems
Spring 2006

CHAPTER 16 – Transaction Processing – Part 2

COP 4710: Database Systems
Spring 2006

CHAPTER 16 – Transaction Processing – Part 2

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790
http://www.cs.ucf.edu/courses/cop4710/spr2006

COP 4710: Database Systems (Transaction Processing) Page 2 Mark Llewellyn ©

Types of Locks
• There are different types of locks that locking protocols may

utilize.

• The most restrictive systems use only exclusive-locks (X-
lock also called a binary lock).

• An exclusive lock permits the transaction which holds the
lock exclusive access to the object of the lock.

• The process of locking and un-locking objects must be
indivisible operations within a critical section. There can be
no interleaving of issuing and releasing locks.

If transaction TX holds an X-lock on object A then no distinct transaction TY
can obtain an X-lock on object A until transaction TX releases the X-lock
on object A. TY is blocked awaiting the X-lock on object A.

COP 4710: Database Systems (Transaction Processing) Page 3 Mark Llewellyn ©

X-Lock Protocol

• When the lock manager grants a transaction’s request for a
particular lock, the transaction is said to “hold the lock” on
the object.

• Under the X-lock protocol a transaction must obtain, for
every object required by the transaction, an X-lock on the
object. This applies to both reading and writing operations.

Before any transaction TX can read or write an object A, it must first
acquire an X-lock on object A. If the request is granted TX will proceed
with execution. If the request is denied, TX will be placed into a queue of
transactions awaiting the X-lock on object A, until the lock can be granted.
After TX finishes with object A, it must release the X-lock.

COP 4710: Database Systems (Transaction Processing) Page 4 Mark Llewellyn ©

Serializability Under X-Lock Protocol

Algorithm TestSerializiabiltyXLock

//input: a concurrent schedule S under X-lock protocol

//output: if S is serializable, then a serially equivalent schedule S′ is produced, otherwise, no.

TestSerializabilityXLock(S)

1. let S = (a1, a2, ..., an) where “action” ai is either (TX: Xlock A) or (TX: Unlock A)

2. construct a precedence graph of n nodes where n is the number of distinct
transactions in S.

3. proceed through S as follows:

• if ar = (TX: Unlock A) then look for the next action as of the form (TY: Xlock A).
If one exists, draw an edge in the graph from TX to TY. The meaning of this
edge is that in any serially equivalent schedule TX must precede TY.

4. if the graph constructed in step 3 contains a cycle, then S is not equivalent to any
serial schedule (i.e., S is not serializable). If no cycle exists, then any topological
sort of the graph will yield a serial schedule equivalent to S.

COP 4710: Database Systems (Transaction Processing) Page 5 Mark Llewellyn ©

Example - X-Lock Protocol and Serializability
Let S = [(T1: Xlock A), (T2: Xlock B), (T2: Xlock C), (T2: Unlock B),

(T1: Xlock B), (T1: Unlock A), (T2: Xlock A), (T2:Unlock C),

(T2: Unlock A), (T3: Xlock A), (T3: Xlock C), (T1: Unlock B),

(T3: Unlock C), (T3: Unlock A)]

T1 T2

T3

Edge #1: (T2: Unlock B)...(T1:Xlock B)

Edge #2: (T1: Unlock A)...(T2: Xlock A)

Edge #3: (T2: Unlock C)...(T3: Xlock C)

Edge #4: (T2: Unlock A)...(T3: Xlock A)

3, 4

2

1

Not serializable, cycle exists

COP 4710: Database Systems (Transaction Processing) Page 6 Mark Llewellyn ©

Problems with X-Lock Protocol
• The X-lock protocol is too restrictive.

• Several transactions that need only to read an object must all wait in turn
to gain an X-lock on the object, which unnecessarily delays each of the
transactions.

• One solution is to issue different types of locks, called shared-locks (S-
locks or read-locks) and write-locks (X-locks).

• The lock manager can grant any number of shared locks to concurrent
transactions that need only to read an object, so multiple reading is
possible. Exclusive locks are issued to transactions needing to write an
object.

• If an X-lock has been issued on an object to transaction TX, then no other
distinct transaction TY can be granted either an S-lock or an X-lock until
TX releases the X-lock. If any transaction TX holds an S-lock on an
object, then no other distinct transaction TY can be granted an X-lock on
the object until all S-locks have been released.

COP 4710: Database Systems (Transaction Processing) Page 7 Mark Llewellyn ©

Serializability Under X/S-Lock Protocol
Algorithm TestSerializiabiltyX/SLock

//input: a concurrent schedule S under X/S-lock protocol

//output: if S is serializable, then a serially equivalent schedule S′ is produced, otherwise, no.

TestSerializabilityXLock(S)

1. let S = (a1, a2, ..., an) where “action” ai is one of (TX: Slock A), (TX: Xlock A)
or (TX: Unlock A).

2. construct a precedence graph of n nodes where n is the number of distinct
transactions in S.

3. proceed through S as follows:

• if ax = (TX: Slock A) and ay is the next action (if it exists) of the form (TY: Xlock
A) then draw an edge from TX to TY.

• if ax = (TX: Xlock A) and there exists an action az = (TZ: Xlock A) then draw an
edge in the graph from TX to TZ. Also, for each action ay of the form (TY: Slock
A) where ay occurs after ax (TX: Unlock A) but before aZ (TZ: Xlock A) draw an
edge from TX to TY. If az does not exist, then TY is any transaction to perform
(TY: Slock A) after (TX: Unlock A).

4. if the graph constructed in step 3 contains a cycle, then S is not equivalent to any
serial schedule (i.e., S is not serializable). If no cycle exists, then any topological
sort of the graph will yield a serial schedule equivalent to S.

COP 4710: Database Systems (Transaction Processing) Page 8 Mark Llewellyn ©

Example – X/S-Lock Protocol and Serializability
Let S = [(T3: Xlock A), (T4: Slock B), (T3: Unlock A), (T1: Slock A),

(T4: Unlock B), (T3: Xlock B), (T2: Slock A), (T3:Unlock B),

(T1: Xlock B), (T2: Unlock A), (T1: Unlock A), (T4: Xlock A),

(T1: Unlock B), (T2: Xlock B), (T4: Unlock A), (T2: Unlock B)]

Edge #1: (T4: Slock B)...(T3: Xlock B)
Edge #2: (T1: Slock A)...(T4: Xlock A)
Edge #3: (T2: Slock A)...(T4: Xlock A)
Edge #4: (T3: Xlock A)...(T4: Xlock A)

Edge #5: (T3: Unlock A)...(T1: Slock A)
Edge #6: (T3: Unlock A)...(T2: Slock A)

Edge #7: (T3: Xlock B)...(T1:Xlock B)
Edge #8: (T1: Xlock B)...(T2: Xlock B)

Not serializable, cycle exists

T1 T2

T3

2

1T4

3

4

5,7

8

6

COP 4710: Database Systems (Transaction Processing) Page 9 Mark Llewellyn ©

Problems Locking Protocols

• The X-lock protocol can lead to deadlock.

– For example consider the schedule S = [(T1:Xlock A), (T2: Xlock B),

(T1: Xlock B), (T2: Xlock A)]

• While there are many different techniques that can be used to
avoid deadlock, most are not suitable to the database
environment.

T1 is blocked T2 is blocked

COP 4710: Database Systems (Transaction Processing) Page 10 Mark Llewellyn ©

Deadlock Avoidance - Problems Locking Protocols
(cont.)

• Impose a total ordering on the objects.

– Problem is the set of lockable objects is very large and changes dynamically.
– Many database transactions determine the lockable object based on content

and not name.
– The locking scope of a transaction is typically determined dynamically.

• Two-phase locking protocols.
– All locks are granted at the beginning of a transaction’s processing or no

locks are granted. Transactions which cannot acquire all of the locks they
need are suspended without being granted any locks.

– Leads to low data utilization, low-levels of concurrency and livelock.
– Livelock occurs when a transaction that needs several “popular” items is

consistently blocked by transactions which need only one of the popular
items.

COP 4710: Database Systems (Transaction Processing) Page 11 Mark Llewellyn ©

Deadlock Avoidance - Problems Locking Protocols
(cont.)

• There is also a timestamp based protocol (under locking –
don’t confuse this with timestamp based concurrency
controls we’ll see later) to prevent deadlock under locking
protocols.

• A timestamp is a unique identifier assigned to each
transaction based upon the time a transaction begins.

– if ts(TX) < ts(TY) then TX is the older transaction and TY is the
younger transaction.

– In resolving deadlock issues, the system uses the value of the
timestamp to determine if a transaction should wait or rollback.
Locking is still used to control concurrency.

– Under rollback a transaction retains its original timestamp.

COP 4710: Database Systems (Transaction Processing) Page 12 Mark Llewellyn ©

Deadlock Resolution – Wait or Die

• Assume that TX requests an object whose lock is held by TY.

• This is a non-preemptive strategy where if ts(TX) < ts(TY) (TX is older
than TY) then TX is allowed to wait on TY, otherwise TX dies (is rolled
back). TY continues to hold the lock and TX subsequently restarts with its
original timestamp.

– if request is made by older transaction – it waits on the younger transaction.

– if request is made by younger transaction – it dies.

• Example: let ts(T1) = 5, ts(T2) = 10, ts(T3) = 15

Suppose T2 requests object held by T1. T2 is younger than T1, T2 dies.

Suppose T1 requests object held by T2. T1 is older than T2, T1 waits.

COP 4710: Database Systems (Transaction Processing) Page 13 Mark Llewellyn ©

Deadlock Resolution – Wound or Wait

• Assume that TX requests an object whose lock is held by TY.

• This is a preemptive strategy where if ts(TX) < ts(TY) (TX is older than
TY) then TY is aborted (TX wounds TY). TX preempts the lock and
continues. Otherwise, TX waits on TY.

– if request is made by the younger transaction – it waits on the older
transaction.

– if request is made by older transaction – it preempts the lock and the younger
transaction dies.

• Example: let ts(T1) = 5, ts(T2) = 10, ts(T3) = 15

Suppose T2 requests object held by T1. T2 is younger than T1, T2 waits.

Suppose T1 requests object held by T2. T1 is older than T2, T1 gets
lock and T2 dies.

COP 4710: Database Systems (Transaction Processing) Page 14 Mark Llewellyn ©

Timestamp Deadlock Resolution
• Both wait or die and wound or wait protocols avoid starvation. At any

point in time there is a transaction with the smallest timestamp (i.e.,
oldest transaction) and it will not be rolled back in either scheme.

Operational Differences

– In wait or die, the older transaction waits for the younger one to release its
locks, thus, the older a transaction gets, the more it will wait. In wound or
wait, the older transaction never waits.

– In wait or die protocol if transaction T1 dies and is rolled back it will in
probably be re-issued and generate the same set of requests as before. It is
possible for T1 to die several times before it will be granted the lock it is
requesting as the older transaction is still using the lock. Whereas, in wound
or wait, it would restart once and then be blocked. Typically, the wound or
wait protocol will result in fewer roll backs than does the wait or die protocol.

COP 4710: Database Systems (Transaction Processing) Page 15 Mark Llewellyn ©

Deadlock Avoidance vs. Detection and Resolution

• If the deadlock prevention or avoidance mechanism is not
100% effective, then it is possible for a set of transactions to
become deadlocked.

• Handling this problem can be achieved in one of two basic
manners: optimistically or pessimistically.

• Optimistic approaches tend to wait for deadlock to occur
before doing anything about it, while pessimistic approaches
tend to make sure that deadlock cannot occur.

• Optimistic approaches use detection and resolution schemes
while pessimistic approaches use avoidance mechanisms.

COP 4710: Database Systems (Transaction Processing) Page 16 Mark Llewellyn ©

Deadlock Detection and Resolution

• Deadlock detection and resolution involves two phases:
detection of deadlock and its resolution.

• Deadlock detection is commonly done with wait-for graphs
(a form of a precedence graph). Each node in the graph
represents a transaction in the system. An edge from
transaction TX to transaction TY indicates that TX is waiting
on an object currently held by TY. A deadlock is detected if
the graph contains a cycle.

• The resolution phase or the recovery from the deadlock,
essentially amounts to selecting a victim of the deadlock to
be rolled back, thus breaking the deadlock.

COP 4710: Database Systems (Transaction Processing) Page 17 Mark Llewellyn ©

Deadlock Detection and Resolution (cont.)

• Selection of a victim to resolve the deadlock can be based upon many
different things:

– how long has the transactions been processing?

– how much longer does the transaction require to complete?

– how much data has been read/written?

– how many data items are still needed?

– how many transactions will need to be rolled back?

• Once a victim has been selected you can decide how far back to roll it. It
is not always necessary for a complete restart.

• Deadlock detection and resolution requires some mechanism to prevent
starvation from occurring. Typically this is done by limiting the number
of times a single transaction can be identified as the “victim”.

COP 4710: Database Systems (Transaction Processing) Page 18 Mark Llewellyn ©

Timestamping Concurrency Control

• No locking is used with timestamp concurrency control. Do
not confuse this topic with the timestamped method for
avoiding deadlock under locking.

• As before, each transaction is issued a unique timestamp
indicating the time it arrived in the system.

• The size of the timestamp varies from system to system, but
must be sufficiently large to cover transactions processing
over long periods of time.

• Assignment of the timestamp is typically handled by the
long-term scheduler as transactions are removed from some
sort of input queue.

COP 4710: Database Systems (Transaction Processing) Page 19 Mark Llewellyn ©

Timestamping Concurrency Control (cont.)

• In addition to the transaction’s timestamp, each object in the
database has associated with it two timestamps:

– read timestamp – denoted rts(object), and it represents the highest
timestamp of any transaction which has successfully read this object.

– write timestamp – denoted wts(object), and it represents the highest
timestamp of any transaction to successfully write this object.

• As with locking the granularity of an “object” in the database
becomes a concern here, since the overhead of the
timestamps can be considerable if the granularity is too fine.

COP 4710: Database Systems (Transaction Processing) Page 20 Mark Llewellyn ©

Timestamp Ordering Protocol
READ – transaction TX performs read(object)

if ts(TX) < wts(object)
then rollback TX // implies that the value of the object has been written by a

// transaction TY which is younger than TX

else // ts(TX) >= wts(object)
execute read(object)
set rts(object_ = max{ rts(object), ts(TX)}

WRITE – transaction TX performs write(object)
if ts(TX) < rts(object)

then rollback TX //implies that the value of the object being produced by TX was
//read by a transaction TY which is younger than TX and TY

//assumed the value of the object was valid.
else if ts(TX) < wts(object)

then ignore write(object) //implies that TX is attempting to write an “old”
//value which has been updated by a younger
//transaction.

else
execute write(object
set wts(object) = max{wts(object), ts(TX)}

COP 4710: Database Systems (Transaction Processing) Page 21 Mark Llewellyn ©

Explanation of the Ignore Write Rule

• In the timestamp ordering protocol, when the timestamp of the
transaction attempting to write an object is less than the write
timestamp of the object of concern, the write is simply ignored.

• This is known as Thomas’s write rule.

• Suppose that we have two transactions T1 and T2 where T1 is the
older transaction. T1 attempts to write object X. If ts(T1) <
wts(X) then if T2 was the last transaction to write X, wts(X) =
ts(T2) and between the time T2 wrote X and T1 attempted to write
X, no other transaction Tn read X or otherwise rts(X) > ts(T1) and
T1 would have aborted when attempting to write X. Thus T1 and
T2 have read the same value of X and since T2 is younger, the
value that would have been written by T1 would simply have been
overwritten by T2, so T1’s write can be ignored.

COP 4710: Database Systems (Transaction Processing) Page 22 Mark Llewellyn ©

Example - Timestamp Ordering Protocol

rts = 175
wts = 0

wts = 200
rts = 200

rts = 150
wts = 200final

rts = 0
wts = 0

rts = 0
wts = 0

rts = 0
wts = 0

ts = 175ts = 150ts = 200initial

7

6

5

4

3

2

1

time

ObjectsTransactions

rts = 175

C

wts = 200

rts =200

B

wts = 200

rts = 150

A

ignore

abort T2
ts(T2) < rts(C)

allowed

allowed

allowed

allowed

allowed

Action

write A

read C

T3

write
C

read A

T2

write A

write B

read B

T1

